Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4

نویسندگان

  • Ombretta Foresti
  • Annamaria Ruggiano
  • Hans K Hannibal-Bach
  • Christer S Ejsing
  • Pedro Carvalho
چکیده

Sterol homeostasis is essential for the function of cellular membranes and requires feedback inhibition of HMGR, a rate-limiting enzyme of the mevalonate pathway. As HMGR acts at the beginning of the pathway, its regulation affects the synthesis of sterols and of other essential mevalonate-derived metabolites, such as ubiquinone or dolichol. Here, we describe a novel, evolutionarily conserved feedback system operating at a sterol-specific step of the mevalonate pathway. This involves the sterol-dependent degradation of squalene monooxygenase mediated by the yeast Doa10 or mammalian Teb4, a ubiquitin ligase implicated in a branch of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Since the other branch of ERAD is required for HMGR regulation, our results reveal a fundamental role for ERAD in sterol homeostasis, with the two branches of this pathway acting together to control sterol biosynthesis at different levels and thereby allowing independent regulation of multiple products of the mevalonate pathway. DOI:http://dx.doi.org/10.7554/eLife.00953.001.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An unusual transmembrane helix in the endoplasmic reticulum ubiquitin ligase Doa10 modulates degradation of its cognate E2 enzyme.

In the endoplasmic reticulum (ER), nascent membrane and secreted proteins that are misfolded are retrotranslocated into the cytosol and degraded by the proteasome. For most ER-associated degradation (ERAD) substrates, ubiquitylation is essential for both their retrotranslocation and degradation. Yeast Doa10 is a polytopic membrane ubiquitin ligase (E3) that along with its cognate ubiquitin-conj...

متن کامل

Membrane topology of the yeast endoplasmic reticulum-localized ubiquitin ligase Doa10 and comparison with its human ortholog TEB4 (MARCH-VI).

Quality control machinery in the endoplasmic reticulum (ER) helps ensure that only properly folded and assembled proteins accumulate in the ER or continue along the secretory pathway. Aberrant proteins are retrotranslocated to the cytosol and degraded by the proteasome, a process called ER-associated degradation. Doa10, a transmembrane protein of the ER/nuclear envelope, is one of the primary u...

متن کامل

A Conserved C-terminal Element in the Yeast Doa10 and Human MARCH6 Ubiquitin Ligases Required for Selective Substrate Degradation.

Specific proteins are modified by ubiquitin at the endoplasmic reticulum (ER) and are degraded by the proteasome, a process referred to as ER-associated protein degradation. In Saccharomyces cerevisiae, two principal ER-associated protein degradation ubiquitin ligases (E3s) reside in the ER membrane, Doa10 and Hrd1. The membrane-embedded Doa10 functions in the degradation of substrates in the E...

متن کامل

Membrane and soluble substrates of the Doa10 ubiquitin ligase are degraded by distinct pathways.

The yeast Doa10 ubiquitin (Ub) ligase resides in the endoplasmic reticulum (ER)/nuclear envelope (NE), where it functions in ER-associated degradation (ERAD). Doa10 substrates include non-ER proteins such as the transcription factor Mat alpha2. Here, we expand the range of Doa10 substrates to include a defective kinetochore component, a mutant NE membrane protein, and a substrate-regulated huma...

متن کامل

The SUD1 gene encodes a putative E3 ubiquitin ligase and is a positive regulator of 3-hydroxy-3-methylglutaryl coenzyme a reductase activity in Arabidopsis.

The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme catalyzes the major rate-limiting step of the mevalonic acid (MVA) pathway from which sterols and other isoprenoids are synthesized. In contrast with our extensive knowledge of the regulation of HMGR in yeast and animals, little is known about this process in plants. To identify regulatory components of the MVA pathway in plants, we per...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2013